1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
| from pylab import * eqs = [] eqs.append((r"$W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2} \int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ U^{2\beta}_{\delta_1 \rho_1} - \alpha^\prime_2U^{1\beta}_{\rho_1 \sigma_2} }{U^{0\beta}_{\rho_1 \sigma_2}}\right]$")) eqs.append((r"$\frac{d\rho}{d t} + \rho \vec{v}\cdot\nabla\vec{v} = -\nabla p + \mu\nabla^2 \vec{v} + \rho \vec{g}$")) eqs.append((r"$\int_{-\infty}^\infty e^{-x^2}dx=\sqrt{\pi}$")) eqs.append((r"$F_G = G\frac{m_1m_2}{r^2}$")) eqs.append((r"$F_y-\frac{dF_{y'}}{dx}=0$")) eqs.append((r"$\delta J=\frac{\partial J}{\partial u_i}\delta u_i$")) eqs.append((r"$\prod_{i=1}^n\times\sum_{j_i=1}^m\prod_{i=1}^na_{ij_i}$")) eqs.append((r"$\int_\Omega f\nabla \cdot \mathbf{A} d\Omega$")) eqs.append((r"$(x+y)^n=\sum_{k=0}^n\binom{n}{k}x^{n-k}y^k$")) eqs.append((r"$\binom{n}{k_1,k_2,\cdots,k_m}$")) figure(figsize=(20,10)) axes([0.025,0.025,0.95,0.95])
for i in range(20): index = np.random.randint(0,len(eqs)) eq = eqs[index] size = np.random.uniform(20,43) x,y = np.random.uniform(0,1,2) alpha = np.random.uniform(0.05,.15) text(x, y, eq, ha='center', va='center', color="# 11557c", alpha=alpha, transform=gca().transAxes, fontsize=size, clip_on=True) xticks([]), yticks([]) show()
|