| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 
 | from pylab import *eqs = []
 eqs.append((r"$W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2} \int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ U^{2\beta}_{\delta_1 \rho_1} - \alpha^\prime_2U^{1\beta}_{\rho_1 \sigma_2} }{U^{0\beta}_{\rho_1 \sigma_2}}\right]$"))
 eqs.append((r"$\frac{d\rho}{d t} + \rho \vec{v}\cdot\nabla\vec{v} = -\nabla p + \mu\nabla^2 \vec{v} + \rho \vec{g}$"))
 eqs.append((r"$\int_{-\infty}^\infty e^{-x^2}dx=\sqrt{\pi}$"))
 eqs.append((r"$F_G = G\frac{m_1m_2}{r^2}$"))
 eqs.append((r"$F_y-\frac{dF_{y'}}{dx}=0$"))
 eqs.append((r"$\delta J=\frac{\partial J}{\partial u_i}\delta u_i$"))
 eqs.append((r"$\prod_{i=1}^n\times\sum_{j_i=1}^m\prod_{i=1}^na_{ij_i}$"))
 eqs.append((r"$\int_\Omega f\nabla \cdot \mathbf{A} d\Omega$"))
 eqs.append((r"$(x+y)^n=\sum_{k=0}^n\binom{n}{k}x^{n-k}y^k$"))
 eqs.append((r"$\binom{n}{k_1,k_2,\cdots,k_m}$"))
 figure(figsize=(20,10))
 axes([0.025,0.025,0.95,0.95])
 
 for i in range(20):
 index = np.random.randint(0,len(eqs))
 eq = eqs[index]
 size = np.random.uniform(20,43)
 x,y = np.random.uniform(0,1,2)
 alpha = np.random.uniform(0.05,.15)
 text(x, y, eq, ha='center', va='center', color="# 11557c", alpha=alpha,
 transform=gca().transAxes, fontsize=size, clip_on=True)
 xticks([]), yticks([])
 show()
 
 |